Лучевые нагрузки на пациента при легочной флюорографии

Флюорографическое исследование проводится для диагностики лёгочных патологий. Врачи в первую очередь проводят исследование на поиск признаков туберкулёза, но в ходе флюорографии можно обнаружить и другие отклонения.

Дозы облучения при флюорографии достаточно, чтобы предположить туберкулёзное поражение, и злокачественное новообразование.

Зачем необходимо делать флюорографию

Флюорографию проводят, чтобы обнаружить отклонения в легких. Детям проводится процедура редко, исключительно по показаниям. Только при достижении пятнадцати лет подростки обязательно проходят периодическое флюорографическое исследование. Частота проведения флюорографии — один раз в год. Чаще посещать кабинет рентгенолога можно в том случае, если у человека есть заболевания, которые требуется контролировать при помощи рентгена.

Для некоторых категорий населения исследование проводят два раз в год. Это люди, работающие на вредном производстве, медицинские и педагогические работники, пациенты, те, кто проживают вместе с человеком, страдающим туберкулёзом. Этим людям необходимо делать исследование чаще, поскольку они контактируют сами или могут передавать заболевание другим.

После проведения исследования врач по результатам диагностики делает короткую выписку для пациента. Там указывается дата прохождения исследования, данные человека, проходившего диагностику, какую дозу облучения при рентгене получил пациент.

В большинстве случаев пациенты получают корешок с указанием «патологий не обнаружено» или «лёгкие и сердце без изменений». Документ о прохождении флюорографии действителен в течение года. Его могут потребовать в следующих случаях:

  • при устройстве на работу;
  • перед комплексным обследованием;
  • при зачислении на воинскую службу;
  • перед проведением хирургической операции;
  • при выезде за границу;
  • для предоставления в роддом.

Флюорографическое исследование помогает не только предположить туберкулёзное поражение лёгких, но и новообразования в тканях лёгких, например, кисты или злокачественные опухоли. Рентгеновское исследование поможет обнаружить инородные тела в бронхах.

По снимку могут определить следующие заболевания:

  • пневмония;
  • рак;
  • склероз или фиброз лёгочной ткани;
  • туберкулёз.

По наличию определённых маркеров (выраженная сеть кровеносных сосудов, расширенные бронхи) врачи могут напрямую или косвенно определить заболевание, имеющееся у пациента. Покажут лёгкие и последствия ранее перенесённых патологий, поскольку на их тканях появляются спайки, рубцы, кальцификаты.

Туберкулёз лёгких проявляется овальными пятнами в теле органов дыхания. Поскольку флюорография является довольно информативным исследованием, то её рекомендуют делать ежегодно для своевременной диагностики лёгочных патологий.

Системные и внесистемные единицы измерения

В процессе научного открытия и последующего изучения источников ионизирующего излучения и радиоактивности возникла необходимость во введении специальных единиц измерения. Первыми такими единицами стали Кюри и Рентген. Изначально в мировой практике исследования радиоактивного фона полностью отсутствовала систематизация, поэтому сегодня первичные единицы измерения принято называть внесистемными.

В настоящее время подавляющим большинством государств принята единая интернациональная система измерения (CI). В Российской Федерации переход на CI был начат в январе 1982 года. Предполагалось, что он будет завершен к январю 1990 года, но политические и экономические события в стране существенно затянули данный процесс. Тем не менее, вся современная дозиметрическая аппаратура выпускается с учётом градуирования в новых единицах измерения.

За несколько десятилетий активного изучения и практического применения рентгеновского излучения было введено большое количество различных единиц измерения дозы: Бэр, Грэй, Беккерель, Рад, Кюри и многие другие. Они используются в различных системах измерения и сферах радиологии. В контексте рентгенодиагностики наиболее часто употребляемые – Зиверт и Рентген.

Области применения Рентгена и Зиверта

Рентген сегодня считается устаревшей единицей измерения. Сфера её применения за последние годы существенно сузилась. Чаще всего она теперь используется для отображения общего излучения, тогда как размер полученной человеком дозы обозначается Зивертами.

Еще одно современное применение единицы измерения Рентген – определение характеристик рентгеновского аппарата, в том числе уровня излучаемой им проникающей радиации.

Для объективной и максимально точной оценки воздействия радиоактивного фона на человеческий организм используется понятие – эквивалентная поглощенная доза. ЭПД дает возможность определить количественную величину поглощенной организмом энергии. Анализ проводится с учетом биологической реакции отдельных тканей тела на ионизирующее излучение. При определении показателей применяется единица измерения – Зиверт. Она равна примерно 100 Рентген.

Тысячные и миллионные доли Зиверта/Рентгена

Мощность получаемой дозы облучения при прохождении рентгенодиагностики в десятки раз ниже показателя в 1 зиверт. Многократно ниже данной единицы измерения и естественный фон облучения. Поэтому для проведения более корректных замеров были введены такие понятия, как миллизиверт (мЗв) и микрозиверт (мкЗв). Один зиверт равен тысяче миллизиверт, или одному миллиону микрозиверт. Аналогичные значения применяются и по отношению к Рентгену.

Мощность дозы принято отображать в виде количественной части полученного облучения за определённый временной промежуток. Наиболее распространенные единицы времени: секунды, минуты и часы. Следовательно, часто используемые показатели: зв/ч, мзв/, р/ч, мр/ч и так далее.

Противопоказания к флюорографии

Говорить об абсолютных противопоказаниях при проведении исследования не приходится. Процедура неинвазивная и не несёт вреда для организма, пока выполняется в допустимых нормах. Относительными противопоказаниями к флюорографии являются:

  • состояние здоровья пациента, при котором он не может соблюдать вертикальное положение при проведении исследования (за исключением аппарата с вращающимся штативом);
  • дыхательная недостаточность, которая при задержке дыхания может спровоцировать проблемы со здоровьем у пациента;
  • беременность (период лактации);
  • возраст младше пятнадцати лет.

При острой необходимости, если человеку нужно сделать снимок по жизненно важным показателям, ему обязательно проводят рентгенографию грудной клетки.

Вред флюорографии

Флюорография чрезвычайно важна для своевременного выявления патологий лёгких. Тем не менее несмотря на ценность исследования, врачи настороженно относятся к этому методу диагностики, что связано в первую очередь с лучевой нагрузкой.

При высокой радиационной нагрузке на организм лучи могут вызывать мутации в клетках тканей и провоцировать активное разрастание злокачественных новообразований. Облучение рентгеном может спровоцировать лучевую болезнь. Но не стоит паниковать — пациенты защищены от превышения разрешённой годовой дозировки не только на практике, но и законодательно, поскольку санитарными актами запрещено более 5 мЗВ.

Флюорограф цифровой сканирующий (самый безопасный и современный метод диагностики)

Рентгеновские исследования с профилактической целью проводят безопасно, поскольку пациенты не получают дополнительного излучения. Поэтому вреда процедура не даёт, при условии соблюдения частоты рентгеновских снимков.

Последствия воздействия рентгеновского излучения на человека. Справка

Биологические эксперименты на мышах, кроликах и мушках (дрозофилах) показали, что даже малые дозы систематического облучения приводят к вредным генетическим эффектам. Большинство генетиков признает применимость этих данных и к человеческому организму.

Степень опасности рентгеновского облучения для людей зависит от контингента лиц, подвергающихся облучению. В первую очередь это относится к профессионалам, работающим с рентгеновской аппаратурой. Эта категория охватывает врачей‑рентгенологов, стоматологов, а также научно‑технических работников и персонал, обслуживающий и использующий рентгеновскую аппаратуру. Следующая категория — это пациенты. Строгих критериев здесь не существует, и безопасный уровень облучения, который получают пациенты во время лечения, определяется лечащими врачами. Врачам не рекомендуется без необходимости подвергать пациентов рентгеновскому обследованию. Особую осторожность следует проявлять при обследовании беременных женщин и детей. В этом случае принимаются специальные меры.

Накопление знаний о воздействии рентгеновского излучения на организм человека привело к разработке национальных и международных стандартов на допустимые дозы облучения.

Существуют методы контроля, включающие три аспекта: 1) наличие адекватного оборудования, 2) контроль за соблюдением правил техники безопасности, 3) правильное использование оборудования.

При рентгеновском обследовании воздействию облучения должен подвергаться только нужный участок, будь то стоматологические обследования или обследование легких. Сразу после выключения рентгеновского аппарата исчезает как первичное, так и вторичное излучение; отсутствует также и какое‑либо остаточное излучение.

Кроме рентгеновского излучения, которое целенаправленно используется человеком, имеется и так называемое рассеянное, побочное излучение, возникающее по разным причинам, например вследствие рассеяния из‑за несовершенства свинцового защитного экрана, который это излучение не поглощает полностью. Кроме того, многие электрические приборы, не предназначенные для получения рентгеновского излучения, тем не менее генерируют его как побочный продукт. К таким приборам относятся электронные микроскопы, высоковольтные выпрямительные лампы (кенотроны), а также кинескопы устаревших цветных телевизоров. Производство современных цветных кинескопов во многих странах находится сейчас под правительственным контролем.

Материал подготовлен на основе информации открытых источников

Все справки>>

Допустимая доза радиации

Диагностика лёгких проводится в одной проекции. Это означает, что пациент получит наименьшую дозу радиации, чем при других способах диагностики.

Доза флюорографического исследования при цифровом сканирующем аппарате составляет 0,02-0,05 мЗВ. При матричном типе аппарата 0,03-0,06 мЗВ. Плёночный вариант (вредный) 0,1-0,3 мЗВ. Для получения более точных цифр и оценке вредности, пожалуйста воспользуйтесь «Дозиметром»

Рентгенография легких в двух проекциях на цифровом аппарате будет составлять 0,06-0,1 мЗВ, что в два раз выше, нежели у флюорографии.

Лучевые нагрузки на пациента при легочной флюорографии

Лучевая диагностика объединяет многие виды интраскопии, из которых наиболее распространенным является рентгенологический метод, используемый в медицине уже более 100 лет. Профилактическая флюорография органов дыхания в нашей стране традиционно считается одной из самых распространенных процедур. Однако за последнее десятилетие отношение к флюорографии, как эффективному диагностическому методу, резко изменилось. Связано это с плохим состоянием флюорографической техники, а отсюда высокая лучевая нагрузка на пациента, низкое качество изображений пленочных флюорограмм и трудоёмкость архивирования полученных изображений .

И флюорография, и рентгеновский снимок — процедуры доступные и достаточно эффективные в плане раннего выявления доклинических форм туберкулеза и рака легкого. В тоже время медики в буквальном смысле слова бьют тревогу по поводу опасности таких исследований, открыто заявляя о том, что полученная пациентом доза облучения может негативно сказаться на здоровье. Причем специалисты сегодня утверждают, что из-за большого количества диагностических исследований в течение года размеры лучевой нагрузки на пациента стали столь велики, что заставляют говорить о постоянно возрастающей коллективной дозе облучения.

Структура коллективных доз облучения населения России складывается из следующих основных источников:

  • природные
    источники ионизирующего излучения (радон и долгоживущие продукты распада радона — вклад в коллективную дозу 56%,
    космическое
    излучение 14%, всего 70%);
  • медицинские
    источники ионизирующего излучения (рентгенодиагностика и радионуклидная диагностика — всего 29%);
  • техногенные
    источники ионизирующего излучения (всего 1%).

Вклад в суммарную дозу облучения населения от источников ионизирующего излучения, применяемых в медицинских целях, занимает второе место после естественных источников. Средняя эффективная годовая доза в России достигает 1,4 мЗв в год на человека. По структуре в процентах: рентгенография – 34,1; рентгеноскопия – 32,1; профилактическая флюорография – 23,5; диагностическая флюорография – 10,3. Для сравнения: в Великобритании — 0,3 мЗв; в США и Франции — 0,4 мЗв; в Японии — 0,8 мЗв. В среднем, при медицинских обследованиях на одного жителя Земли в год приходится доза облучения, эквивалентная 0,4 мЗв.

Решением Всемирной организации здравоохранения традиционная пленочная флюорография запрещена в цивилизованном мире и не рекомендована к применению в слаборазвитых странах из-за её повышенного радиационного воздействия на пациента. В результате из-за сокращения частоты профилактических обследований населения средний годовой уровень медицинского облучения населения России уменьшился с 1,4 до 1,2 мЗв. Однако из-за участившихся во всем мире вспышек туберкулеза в последние годы значение массовых флюорографических обследований как метода профилактики возросло. В развитых странах эта тревога позволяет активнее искать пути решения данной проблемы. Это в первую очередь касается разработки, производства и использования высокоэффективных рентгенодиагностических аппаратов и внедрение новейших компьютерных технологий в медицине.

Начиная с 1996 года, ведущие разработчики рентгеновской техники предложили международному рынку медицинского оборудования цифровые системы для исследования легких, основанные на различных физических методах получения рентгеновских изображений:

  • на электронном усилителе изображения большого диаметра — (SIEMENS); TH59447HD (Thales); ФСЦ-У-01 (СпектрАП).
  • на «селеновом барабане» — (PHILIPS); DR-1000 (Hologic).
  • на «стимулированном люминофоре» — (FUJI); Orex (Израиль); Agfa (Бельгия).
  • на принципе оптического переноса изображений с экрана на одну или более ПЗС-матрицы – (SWISSRAY); «Ренекс-Флюоро» Гелпик; «ФПЦФ-01» Рентгенпром; «КФЦ» Электрон; «Диарс-МР» Мосрентген.
  • на полномасштабных матрицах из аморфного кремния – (GENERAL ELECTRIC, SIEMENS, PHILIPS); Epex Hologic (США); Pax Scan Varian (США); Pixium-4600 (Франция); CXDT-11 Canon (Япония).

Такие системы по сравнению с пленочной флюорографией позволяют несколько уменьшить лучевую нагрузку без ущерба качества изображения, требуемого для фтизиопульмонологии. Однако высокая стоимость этих аппаратов (350-500 тыс. долл. США), не позволит в нашей стране провести массовую замену более 5000 пленочных аппаратов, из которых более 2000 имеют возраст 15 лет и старше.

Но благодаря внедрению наукоёмких и цифровых технологий в отечественном производстве, созданы реальные возможности решения этой проблемы на современном уровне. Так, ЗАО НАУЧПРИБОР (г. Орел), ЭЛЕКТРОХИМПРИБОР (г. Лесной) и БЭМЗ (г. Бердск) серийно выпускают микродозный цифровой флюорограф МЦРУ СИБИРЬ-Н , который при наилучшем соотношении цены и качества изображений, позволяет снизить радиационное воздействие на пациента более чем в 30 раз. Эта уникальная разработка ученых ИНСТИТУТА ядерной физики им. Г.И. Будкера СО РАН (г. Новосибирск) является одним из представителей нового поколения цифровых рентгенографических аппаратов, основанных на сканировании пациента узким веерным пучком и регистрации прошедшего через объект исследования излучения многоканальным газовым детектором.

Метод сканирования предполагает регистрацию сигнала при синхронном перемещении рентгеновского излучателя, коллиматора и детектора вдоль объекта исследования. Применение сканирующего метода в рентгенологической практике максимально снижает дозы облучения, существенно повышает качество и контрастность изображений, так как облучение узко коллимированным пучком, практически исключает вклад рассеянного излучения в основной информационный поток рентгеновских квантов, особенно при исследовании толстых объектов. Получение цифрового рентгеновского изображение с помощью высокоэффективного газового детектора с большим динамическим диапазоном (для пленочной рентгенографии — фотографическая широта), позволяет одновременно отображать малоконтрастные и высококонтрастные объекты (легкие и средостение) на цифровой рентгенограмме, что выгодно отличает цифровой снимок от обычного пленочного [4].

На протяжении более 5 лет применение МЦРУ Сибирь-Н на базе ЦКБ СОРАН г. Новосибирск подтверждает перспективность и безопасность использования цифрового флюорографа при обследовании населения, а так же низкие дозы облучения пациента и персонал. Исследование детей на МЦРУ проводятся, начиная с 5-6 лет. Исследуются в основном органы грудной клетки, придаточные пазухи носа, шейный отдел позвоночника, череп. Снимки являются достаточно информативными и не требуют проведения контрольных снимков на плёнке в 76% случаев. Опыт использования цифрового флюорографа в Орловском областном противотуберкулезном диспансере показал высокую эффективность МЦРУ в выявлении ранних форм туберкулеза органов дыхания. Чувствительность метода составила 91% при полном отсутствии технического брака, в то же время чувствительность флюорографа 12Ф7 оказался ниже и технический брак встречался в 17,8% случаев [5].

При работе с Thoravision фирмы Philips доза излучения при получении одного изображения по выбору рентгенолога, может составлять от 10 до 40 мР. Для сравнения — при флюорографии – 60 мР, при обзорной рентгенографии — 20-40 мР. Доза при флюорографии с последующей контрольной рентгенографией может составить от 80 до 140 мР. В то время как лучевая нагрузка на пациента при рентгенологическом обследовании грудной полости в передней прямой и правой боковой проекциях на МЦРУ не превышает 2,0 мР. Снимки в двух проекциях на пленочном флюорографе 12Ф9 с КФ-400 дают дозу порядка 1,2-1,4 мЗв.

Измерения эффективных доз облучения на МЦРУ СИБИРЬ-Н проводила кафедра радиационной гигиены РАМ ПО (Российская медицинская академия последипломного образования, г. Москва), применив термолюминесцентный метод дозиметрии с использованием антропоморфного фантома RANDO PHANTOM производства США. Диаметр детектора на основе фтористого лития позволил регистрировать величину дозы практически в точке, поэтому в каждом из критических органов (для определения эффективной дозы) размещалось от 10 (щитовидная железа, печень, почки, желудок) до 50 (легкие, активный костный мозг) таких точечных детекторов. Измерения показали, что эффективная доза при профилактических рентгенологических обследований на МЦРУ в 100 раз ниже предельной годовой эффективной дозы облучения, установленной (НРБ-99) СП 2.6.1.758-99, и в 3 раза ниже уровня дозы, соответствующей верхнему пределу безусловно приемлемого риска.

В таблице 1 приведены средние значения эффективных доз при рентгенологических исследованиях области грудной клетки.

Таблица 1

Вид исследования Эффективная доза мкЗв
70 кВ 80 кВ 100 кВ
Прям. Бок. Прям. Бок. Прям. Бок.
1 Рентгеноскопия (5 мин) 3500 3500 3000 3000 2500 2500
2 Рентгенография (с чувств. 0,008 мГр) 160 180 120 150 100 120
3 Флюорография (с чувств. 0,1-0,2 мГр) 1500 1600 1000 1300 600 800
4 Флюорография (с чувств. 0,03-0,05 мГр) 600 800 500 600 300 400
5 Цифровая флюорография (3-6 мкГр) 50 65
6 МЦРУ Сибирь-Н

(1,5% при 0,87 мкГр; 0,5% при 6,1 мкГр)

<7 <11 <10 <13
7 Продольная томография 5000 — 7000
8 Компьютерная томография 3500 — 5000

Низкие лучевые нагрузки на пациента позволяют применять МЦРУ в тех областях медицины, где стандартная рентгенодиагностика могла осуществляться только по жизненным показаниям. Так, при проведении рентгенопельвиметрии за одно исследование пациентка получает дозу поверхностного облучения 60-70 мР вместо 2-3 Р, получаемых при экрано-пленочной рентгенографии Приведенные в таблице 1 значения показывают, что применение МЦРУ Сибирь-Н в профилактических исследованиях заболеваний органов грудной полости, в ряде случаев позволит: во-первых,

осуществлять динамическое наблюдение за состоянием диспансерных пациентов из групп повышенного риска с любой необходимой периодичностью; во-вторых
,
свести риск облучения к безопасному минимуму при оценке эффективности лечения в динамике больных туберкулезом легких, что в свою очередь позволит своевременно вносить коррекцию в лечение; в-третьих, снять с рассмотрения вопрос о радиационной опасности при массовых обследованиях более ранних возрастных групп.

По заключению ведущих фтизиатров и рентгенологов диагностика на МЦРУ СИБИРЬ-Н позволяет достичь самого высокого уровня выявления туберкулёза на ранних стадиях, при не менее чем 30-ти кратном снижении доз облучения пациента в сравнении с пленочной флюорографией.

Массовые обследования с использованием традиционного метода регистрации рентгеновских изображений приводит к повышенным временным и материальным затратам, связанным с достаточно сложным процессом фотохимического проявления и использованием дорогостоящих серебросодержащих материалов. Содержание пленочного архива, образующего в результате деятельности рентгенологического отделения становится дорогостоящим, так как срок хранения рентгеновских снимков и флюорограмм два года при отсутствии патологии, пять лет и более для снимков, отражающих патологические изменения. Снимки больных детей хранятся десять лет. При этом согласно мировой статистике, до 20% рентгенограмм теряются при хранении в архивах или их трудно вовремя востребовать. Потеря снимка в архиве и брак, неизбежно присутствующий при производстве рентгенограмм, вызывает необходимость проведения повторных исследований, что ведет к увеличению лучевой нагрузки и дополнительным трудовым затратам.

Цифровой вид изображений позволяет легко организовать компактные и легкодоступные рентгеновские архивы. Преимущество цифровой архивации медицинских изображений представлены в таблице 2.

Таблица 2.

Параметр Цифровой архив Пленочный архив
Занимаемое место 1 м3 900 м3
Потеря пленок / изображений Нет 5-20%
Доступ к изображениям Быстрый, простой Сложный, трудозатратный
Связь в реальном времени Есть Нет
Повторные исследования Нет Есть
Стоимость и затраты на хранение Низкая Высокая
Индивидуальный учет лучевых нагрузок Есть Нет
Пожароопасность Нет Есть
Персонал Нет Есть

Накопленная информация в архиве позволяет тиражировать снимок многократно, поэтому отпадает необходимость в повторных обследованиях или может быть использована для быстрого полноценного сравнение результатов обследований, записанных в разный период времени. Цифровой АРХИВ снижает стоимость снимка и сокращает себестоимость диагностических процедур, позволяет легко проводить статистический анализ накопленной информации. Печать изображений на термопринтере UP-895D и сопроводительной информации на лазерном принтере сокращает затраты на расходные материалы. Так, расходы во II кв. 1999 года при использовании пленки форматом 30х40см составили 38 рублей на снимок, флюорографического 70х70мм – 12, на МЦРУ – 6 рублей.

При необходимости можно пересылать снимки на любые расстояния для оперативных консультаций по компьютерным сетям, причем консультанту передается не субъективный доклад обследующего врача, а первичная диагностическая информация. Для ограничения несанкционированного доступа к данным архива вводится ключ защиты. Высокая информативность цифровой рентгенограммы и возможность оперативной работы с архивом позволяют во многих случаях быстро поставить диагноз и сократить количество дополнительных рентгенологических исследований в 10-20 раз. Из других преимуществ цифровых рентгенограмм, следует отметить возможность математической обработки с использованием современных алгоритмов, позволяющих повысить качество изображений путем преобразования к виду, наиболее удобного для визуального анализа. Это обеспечит врачу во многих случаях поставить рентгенологический диагноз на более раннем этапе.

Недавно на бюро ученого медицинского совета МИНЗДРАВ РФ рассмотрел и рекомендовал к применению методику активного выявления туберкулеза на основе компьютерных технологий. Все взрослое население разделили на три группы по степени риска заболеть — высокой, средней и низкой. Первая группа обследуется ежегодно, вторая — раз в два года, а третью группу пока не обследуют совсем. Это позволяет проводить флюорографическое обследование примерно половины взрослого населения и при этом выявлять 80-85% больных туберкулезом. Остальные 15-20% — это уже дело врачей общего профиля, куда люди обращаются с жалобами на кашель и недомогание. Исключение из обследований группы низкой степени риска и обследование группы средней степени риска один раз в два года позволят снизить коллективную дозу облучения. Однако в перспективе здравоохранение вынуждено будет восстанавливать систему массового флюорографического скриннинга в прежних или даже больших объемах в связи чрезвычайной эпидемической ситуацией по туберкулезу. Поэтому применение устаревших моделей рентгеновских аппаратов в медицинской практике приведет не только к снижению качества диагностики, но и к неизбежному дублированию многих рентгенологических процедур. Существует также опасность того, что изношенный парк флюорографической техники в стране не будет своевременно обновлен современными низкодозовыми аппаратами, это приведет к вынужденному увеличению дозовых нагрузок на пациента и персонал, от чего средняя доза медицинского облучения населения неизбежно увеличится в 1,5 раза.

Учитывая опыт использования МЦРУ СИБИРЬ-Н в медицинских учреждениях, а также законы, принятые для безопасности населения и в целях усиления мер борьбы с туберкулезом можно рекомендовать МЦРУ для поэтапной замены имеющихся в эксплуатации пленочных флюорографов с проведением всех необходимых методических, организационных и технических мероприятий. Быстрое внедрение МЦРУ в практическое здравоохранение позволит существенно снизить коллективную дозу облучения, автоматизировать индивидуальный учет доз облучения населения и готовить отчеты по объему и структуре рентгенологических исследований по форме №30 за год.

Флюорография детям

Обычно исследование детям не проводится. Если требуется сделать скрининг на туберкулёз, медики применяют реакцию Манту или Диаскинтест, которые говорят об инфицировании туберкулёзными палочками.

Поэтому в школьном возрасте у детей так распространены «пуговички» — основные маркеры наличия туберкулёза. Флюорографию разрешено делать с пятнадцати лет.

Вред ежегодной флюорографии

Исследование лёгких проходят каждый год. Это не вредно при цифровом типе обследования, поскольку человек получает в течения дня — 0,01-0,02 мЗВ, плюс разговор по телефону — 0,01 мЗВ, поездка в метро за счёт мрамора и гранита — 0,04 мЗВ.

Естественный фон г. Москвы — 0,02 мЗВ. Поэтому флюорография не считается тем фактом, который может привести к осложнениям.

Дозу рентгеновского излучения, полученную за год, флюорография не превышает, а по установленным годовым меркам исследование можно делать несколько раз в год. При необходимости врачи дают направление на внеочередное исследование.

Насколько опасна полученная при рентгене позвоночника доза излучения?

Чтобы понять это нужно учесть, что за год обычной жизни (то есть без проведения флюорографий, КТ и рентгенов) человек получает от 2 до 3 мЗв. Цифры разнятся, т.к. этот показатель сильно зависит, например, от высоты над уровнем моря.

Указанная цифра состоит из:

  • Космического и солнечного излучения 0,3-0,9 мЗв;
  • Природного фона почвы 0,25-0,6 мЗв;
  • Излучения стройматериалов от 0,3 мЗв;
  • Дозы, получаемой из воздуха 0,2-2 мЗв и пр.

Кстати, во время 10 часового полета на высоте 12 км пассажир самолета получает дозу облучения, равную 0,03 мЗв.

Проведя простое сравнение полученных цифр, мы увидим, что по полученной дозе перелет из России в США вполне сравним с рентгеном позвоночника с цифровой регистрацией данных, излучение стройматериалов и воздуха наносит намного больше вреда.

Исходя из приведенных данных становится понятно, что, хотя вред от рентгена позвоночника есть, он не намного больше, чем вред от полетов на самолете или от жизни в городе с обилием стройматериалов и точно не стоит того, чтобы из-за потенциальной опасности отказываться от обследования. Нужно всегда помнить, что опасность рентгеновского излучения намного ниже, чем последствия плохой диагностики заболеваний позвоночника, неверной постановки диагноза и ошибок в определении места возникновения проблемы, которые могут привести к тяжелым осложнениям, инвалидизации и даже смерти пациента.

Альтернатива флюорографии

Если есть подозрения на патологию после прохождения флюорографии, или по каким-либо причинам пациент не может сделать флюорографию, то врач назначает альтернативные методики.

Визуализировать внутренние органы можно при помощи рентгенографии. Это исследование вреднее и информативнее, поскольку лучевая нагрузка в два раза выше. На рентгенографии грудной клетки можно безошибочно установить наличие или отсутствие туберкулёза.

Компьютерная томография (КТ) в отношении туберкулёза, новообразований, будет более информативной и вредной.

Как снизить вред рентгена

При проведении рентгеновского исследование пациента защищают от распространения лучей по всему телу. В таком случае медработник фиксирует на теле пациента свинцовый фартук, не пропускающий рентгеновские лучи. Это первый этап, на котором можно обезопасить себя от вредного воздействия.

После проведения диагностики требуется позаботиться о выведении последствий рентгена. Пациентам советуют пить свежее молоко, соки, побольше гулять.

Остаточные явления после флюорографии выводятся самостоятельно, но не принесёт вреда и приём «Полифепана» для очищения организма.

Флюорография легких является незаменимой процедурой для диагностики туберкулёза, рака и других патологий. Все люди должны планово один раз в год проходить исследование, чтобы вовремя диагностировать отклонения и не стать источником инфекции для окружающих.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]